Hardness of Learning Problems over Burnside Groups of Exponent
ثبت نشده
چکیده
In this work we investigate the hardness of a computational problem introduced in the recent work of Baumslag et al. in [5, 6]. In particular, we study the Bn-LHN problem, which is a generalized version of the learning with errors (LWE) problem, instantiated with a particular family of non-abelian groups (free Burnside groups of exponent 3). In our main result, we demonstrate a random self-reducibility property for Bn-LHN. Along the way, we also prove a sequence of lemmas regarding homomorphisms of free Burnside groups of exponent 3 that may be of independent interest.
منابع مشابه
Hardness of learning problems over Burnside groups of exponent 3
In this work we investigate the hardness of a computational problem introduced in the recent work of Baumslag et al. in [3, 4]. In particular, we study the Bn-LHN problem, which is a generalized version of the learning with errors (LWE) problem, instantiated with a particular family of non-abelian groups (free Burnside groups of exponent 3). In our main result, we demonstrate a random self-redu...
متن کاملRandom Self-Reducibility Properties of Learning Problems over Burnside Groups of Exponent 3
In this work we investigate the hardness of a computational problem introduced in the recent work of Baumslag et al. [BFNSS11]. In particular, we study the Bn-LHN problem, which is a generalized version of the learning with errors (LWE) problem, instantiated with a particular family of non-abelian groups (free Burnside groups of exponent 3). In our main result, we demonstrate a random self-redu...
متن کاملThe two generator restricted Burnside group of exponent five
In 1902 Burnside [4] wrote "A still undecided point in the theory of discontinuous groups is whether the order of a group may be not finite while the order of every operation it contains is finite". This leads to the following problem, now called the Burnside problem: "If a group is finitely generated and of finite exponent, is it finite?" This is a very difficult question so a weaker form know...
متن کاملThe Burnside Groups and Small Cancellation Theory
In a pair of recent articles, the author develops a general version of small cancellation theory applicable in higher dimensions ([5]), and then applies this theory to the Burnside groups of sufficiently large exponent ([6]). More specifically, these articles prove that the free Burnside groups of exponent n ≥ 1260 are infinite groups which have a decidable word problem. The structure of the fi...
متن کاملOn the Restricted Burnside Problem
After many unsuccessful attempts to obtain a proof in the late 30s-early 40s the following weaker version of The Burnside Problem was studied: Is it true that there are only finitely many 7??-generated finite groups of exponent nl In other words the question is whether there exists a universal finite m-generated group of exponent n having all other finite m-generated groups of exponent n as hom...
متن کامل